首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25001篇
  免费   2238篇
  国内免费   2208篇
  2023年   354篇
  2022年   351篇
  2021年   632篇
  2020年   761篇
  2019年   963篇
  2018年   709篇
  2017年   750篇
  2016年   821篇
  2015年   766篇
  2014年   1169篇
  2013年   1602篇
  2012年   1134篇
  2011年   998篇
  2010年   918篇
  2009年   1207篇
  2008年   1219篇
  2007年   1387篇
  2006年   1209篇
  2005年   1120篇
  2004年   987篇
  2003年   945篇
  2002年   916篇
  2001年   835篇
  2000年   722篇
  1999年   658篇
  1998年   574篇
  1997年   518篇
  1996年   451篇
  1995年   455篇
  1994年   400篇
  1993年   344篇
  1992年   369篇
  1991年   406篇
  1990年   297篇
  1989年   248篇
  1988年   234篇
  1987年   201篇
  1986年   204篇
  1985年   221篇
  1984年   190篇
  1983年   114篇
  1982年   191篇
  1981年   160篇
  1980年   170篇
  1979年   110篇
  1978年   95篇
  1977年   74篇
  1976年   63篇
  1974年   44篇
  1973年   54篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
1.
2.
建立一种靶点蛋白质快速定量检测方法。在原有侧向流动免疫层析技术的基础上,通过优化层析材料和纳米微球的均一性、改进检测区的检测方法,经逐点扫描技术,建立标准浓度曲线,以达到对临床靶点蛋白质的定量检测。以乳腺癌组织中的Her2表达为例,通过对已知浓度样品的检测,验证本技术方法的准确度大于96%。另外,以蛋白质免疫印迹作为组织中特定蛋白质检测金标准,分析临床肿瘤组织中Her2蛋白的含量,其准确率也达到95.5%,而免疫组织化学方法检测准确率仅为69.58%。新型免疫层析法检测结果与靶向治疗患者的愈后密切相关(P<0.01)。改进后的新型免疫层析方法能够准确地对临床靶点蛋白质进行定量检测,而且结合侧向流动技术的简单、快速和易用性,这种新型检测方法可以广泛应用于临床组织标本、血液标本和体液标本中靶点蛋白质的临场定量检测,在一定程度上可以替代免疫组化技术。  相似文献   
3.
4.
Aluminium is the most abundant metal in the Earth's crust and yet, paradoxically, it has no known biological function. Aluminium is biochemically reactive, it is simply that it is not required for any essential process in extant biota. There is evidence neither of element-specific nor evolutionarily conserved aluminium biochemistry. This means that there are no ligands or chaperones which are specific to its transport, there are no transporters or channels to selectively facilitate its passage across membranes, there are no intracellular storage proteins to aid its cellular homeostasis and there are no pathways which evolved to enable the metabolism and excretion of aluminium. Of course, aluminium is found in every compartment of every cell of every organism, from virus through to Man. Herein we have investigated each of the ‘silent’ pathways and metabolic events which together constitute a form of aluminium homeostasis in biota, identifying and evaluating as far as is possible what is known and, equally importantly, what is unknown about its uptake, transport, storage and excretion.  相似文献   
5.
Butana and Kenana breeds from Sudan are part of the East African zebu Bos indicus type of cattle. Unlike other indigenous zebu cattle in Africa, they are unique due to their reputation for high milk production and are regarded as dairy cattle, the only ones of their kind on the African continent. In this study, we sequenced the complete mitochondrial DNA (mtDNA) D‐loop of 70 animals to understand the maternal genetic variation, demographic profiles and history of the two breeds in relation to the history of cattle pastoralism on the African continent. Only taurine mtDNA sequences were identified. We found very high mtDNA diversity but low level of maternal genetic structure within and between the two breeds. Bayesian coalescent‐based analysis revealed different historical and demographic profiles for the two breeds, with an earlier population expansion in the Butana vis a vis the Kenana. The maternal ancestral populations of the two breeds may have diverged prior to their introduction into the African continent, with first the arrival of the ancestral Butana population. We also reveal distinct demographic history between the two breeds with the Butana showing a decline in its effective population size (Ne) in the recent past ~590 years. Our results provide new insights on the early history of cattle pastoralism in Sudan indicative of a large ancient effective population size.  相似文献   
6.
7.
Conservation genetics considerations in fishery management   总被引:1,自引:0,他引:1  
  相似文献   
8.
The mechanism of the self-regulation of gene expression in living cells is generally explained by considering complicated networks of key-lock relationships, and in fact there is a large body of evidence on a hugenumber of key-lock relationships. However, in the present article we stress that with the network hypothesis alone it is impossible to fully explain the mechanism of self-regulation in life. Recently, it has been established that individual giant DNA molecules, larger than several tens of kilo base pairs, undergo a large discrete transition in their higher-order structure. It has become clear that nonspecific weak interactions with various chemicals, suchas polyamines, small salts, ATP and RNA, cause on/off switching in the higher-order structure of DNA. Thus, the field parameters of the cellular environment should play important roles in the mechanism of self-regulation, in addition to networks of key and locks. This conformational transition induced by field parameters may be related to rigid on/off regulation, whereas key-lock relationships may be involved in a more flexible control of gene expression.  相似文献   
9.
Long dinucleotide repeats found in exons present a substantial mutational hazard: mutations at these loci occur often and generate frameshifts. Here, we provide clear and compelling evidence that exonic dinucleotides experience strong selective constraint. In humans, only 18 exonic dinucleotides have repeat lengths greater than six, which contrasts sharply with the genome‐wide distribution of dinucleotides. We genotyped each of these dinucleotides in 200 humans from eight 1000 Genomes Project populations and found a near‐absence of polymorphism. More remarkably, divergence data demonstrate that repeat lengths have been conserved across the primate phylogeny in spite of what is likely considerable mutational pressure. Coalescent simulations show that even a very low mutation rate at these loci fails to explain the anomalous patterns of polymorphism and divergence. Our data support two related selective constraints on the evolution of exonic dinucleotides: a short‐term intolerance for any change to repeat length and a long‐term prevention of increases to repeat length. In general, our results implicate purifying selection as the force that eliminates new, deleterious mutants at exonic dinucleotides. We briefly discuss the evolution of the longest exonic dinucleotide in the human genome—a 10 x CA repeat in fibroblast growth factor receptor‐like 1 (FGFRL1)—that should possess a considerably greater mutation rate than any other exonic dinucleotide and therefore generate a large number of deleterious variants.  相似文献   
10.
DNA replication is a fundamental process of the cell that ensures accurate duplication of the genetic information and subsequent transfer to daughter cells. Various pertubations, originating from endogenous or exogenous sources, can interfere with proper progression and completion of the replication process, thus threatening genome integrity. Coordinated regulation of replication and the DNA damage response is therefore fundamental to counteract these challenges and ensure accurate synthesis of the genetic material under conditions of replication stress. In this review, we summarize the main sources of replication stress and the DNA damage signaling pathways that are activated in order to preserve genome integrity during DNA replication. We also discuss the association of replication stress and DNA damage in human disease and future perspectives in the field.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号